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Abstract 
One of the key problems of materials science that arises in the technology of laser deposi-

tion of powders is the prediction of residual stresses in the product, which are formed as a re-
sult of local melting of the material and its subsequent relaxation to the initial temperature, 
accompanied by non-uniform solidification. A method for investigation of the stress-strain 
characteristics both in a weld bead and in a substrate due to local heating (above the melting 
temperature) and subsequent solidification in laser sintering of metal powders is suggested. 
The model includes two-dimensional stationary equations of thermoelasticity describing the 
stress-strain state of a non-uniformly heated product, as well as the relations approximating 
the thermophysical and elastic properties of the used materials in a wide temperature range, 
including the phase transformation (melting). The computational algorithm developed for the 
numerical integration of the thermoelasticity equations is based on the support operator 
method. The algorithm is implemented as a code and visual presentation of the results de-
scribing the residual stresses during laser sintering of metal powders for computers with par-
allel architecture. The joint flat technology was used to obtain the image of the fields of scalar 
quantities.This was done by filling the vector quantities shown by streamlines with color and 
the direction field. The spatial distribution of residual thermoelastic stresses in the substrate 
and in the deposited layer obtained as a result of numerical simulation allows to predict the 
defects appearing in the product during laser deposition of powders, which depend on the la-
ser treatment mode and on the thermophysical properties of the materials. 
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fer. 

 

1. Introduction 

Additive manufacturing technologies are currently fast progressing. Particular expectations 
are related with the production of parts by laser sintering / melting (LS) of metal powders [1]. 
The key issue here is the quality of the material of the final product. Among a number of 
difficulties in such technology, the problem of the residual stresses, appearing after material 
heating (local melting) and its subsequent cooling, is one of the most challenging. In a wide 
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range of process parameters and used materials, there may be the cases where the residual 
stresses result in the defects, e.g. microcracks, and therefore the usage of the product under 
mechanical load becomes impossible. 
There is no quite robust and precise manner to experimentally measure the residual thermal 
stresses during the process of cooling and solidification of the weld bead. Therefore, to solve 
this problem, as an addition to experimental research, it is crucial to apply mathematical 
modeling on high-performance computers of the heat and mass transfer during the phase 
transitions [2, 3], as well as the thermo-mechanical phenomena arised in the bead during its 
solidification. 
With a variety of factors affecting the formation of residual stresses, and the complexity of the 
mathematical description, many issues of the problem of prediction and control of the stress-
es, theirs magnitudes and signs, are always under discussion. A mathematical model of a 
stress-strain state behavior of the weld bead must include the relation between the stress and 
the strain tensors in a wide temperature range, enclosing phase transitions. The temperature 
dependence of the elastic moduli, in particular the Young modulus, of the produced material 
is very essential here. 
The existing models of formation of residual stresses, presented in [4-7], are valid in a narrow 
temperature range and do not take into account the temperature dependence of the elastic 
properties of the material. There are limitations in a simplified model [8]  that do not allow to 
consider the results as complete and convincing. The model [8] takes into account the tem-
perature dependence of the thermal expansion coefficient only, the temperature dependences 
of the elastic moduli are ignored. The applied approach to description of thermoelastic stress-
es at high temperatures is also questionable. Calculations are made without reference to the 
actual temperature fields and the form of the welding bead. In the paper [9], 3D numerical 
analysis of temperature and stress fields is performed on the basis of the temperature de-
pendencies of elastic and thermophysical parameters of the material, such as the Young 
modulus, the thermal expansion coefficient, the yield stress. However, the mathematical 
description of the thermal problem in [9] is fragmentary and does not consider the kinetics of 
phase transitions. 
The aim of this work is to build a physical and mathematical model, a numerical algorithm, 
and a visual presentation of the results describing the residual stresses in LS of metal pow-
ders under conditions more close to real ones. By data visualization using a joint flat technol-
ogy for representing fields of scalar quantities by filling in the color and direction fields of 
vector quantities shown by streamlines, an effective stress analysis was performed for a spe-
cific mode of the LS process. The visualization tools used also make it possible, by analyzing 
residual stresses, to predict the appearance of microcracks that occur in the product after the 
laser powder deposition process, depending on the processing mode. 

2. Modelling of residual stresses distributions 
As a numerical analysis of the stress-strain state of the weld bead is carried out, let us consid-
er the two separate tasks of the boundary-value problem of thermomechanics for crystallizing 
melt : thermal and thermoelastic according to the definition of stress-strain state, which are 
solved sequentially. As a result of solving the thermal problem, the temperature field and the 
position of the regions of solid and molten states of the deposited material and substrate are 
determined. The thermal problem in LS is described by the non-stationary heat equation 
taking into account the phase transition (Stefan problem) [6]. The solution to the thermal 
problem is then used as input to determine the stress-strain state of the roller and substrate. 
The modeling of the process of solidification of the melt and the occurrence of residual stress-
es, in turn, is carried out in two stages: the calculation of the stress-strain state of the unmelt-
ed part of the substrate at the stage of laser exposure and the calculation of the stress-strain 
state as the product cools to its initial (reference) temperature. 



Two typical temperatures can be determined for most metals, the melting  tempera-

ture    and the temperature , at which the yield stress  of the material is close to 
zero. For further consideration it is practical to identify the zone where the material loses its 
elastic properties. Its boundaries are somewhat wider than the boundaries of the liquid phase 

and are determined by the isotherm . In a region with  the stresses are considered 
zero. 

In that part of the substrate, where  stationary Lame equations should be solved. Elas-
tic modules included in these equations are considered to be dependent on the temperature 
via the temperature dependence of the Young’s modulus. The cause of the elastic stresses is 
thermal expansion of the material. The thermal expansion magnitude is governed by the local 
temperature. The temperature field is considered as known (from calculations on previous 
stages of the laser radiation impact on the substrate and the welded on it powder). At the first 

stage (heating from the reference temperature  to ) the equations of mechanical 
equilibrium are considered: 

,                                                               (1) 

, 

, 

where  is the full stress tensor;  is the strain tensor;  is deformation of the 

material;  are the components of the displacement vector  of the material; ,  are the 

elastic moduli (Lame coefficients);  is the thermal expansion coefficient;  is the 

reference temperature; the indices . 
We assume that evolution occurs via a series of plane strain states. This means that there are 

no displacements of the material along the direction of the laser beam movement (i.e. -
direction) at each moment. In this case the problem becomes two-dimensional and 

. The non-zero strain tensor components are related with the components of 
displacements by the following relations: 

, , , 
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Figure 1: Schematic representation of the two-step algorithm for residual stresses calcula-

tions. 
 



The problem is solved in the domain, composed of two subdomains (Fig. 1). A subdomain I 

contains the material at the temperature . In a subdomain II the temperature is . 
The subdomain II is not considered, as it is assumed that there are no stresses in it.  The 
thermal stresses in the subregion I lead to area stretching relative to the reference state at 

temperature . Subregions I and II are joined (have no gaps and overlaps)  and have a tem-
perature distribution calculated at the first stage of modeling. 
In Fig. 1 the shaded areas I and II represent the material of the substrate and the bead under 
the reference conditions (not heated or strained). Heated up to the first stage temperature, 
the material expands and fills a region those boundaries are shown by the dashed lines. In 
this state the subdomains I and II densely adjoin to each other. 
The material, returning to its initial reference temperature, would return to the reference 
state with the gap between the subdomains. But since the actual gaps and overlapping do not 
exist after cooling to the reference temperature, the subdomains can not return to their initial 
states free from the stresses. In other words, the material of the substrate and the weld should 
contain residual stresses. 
At the lower boundary of the computational domain we apply the Dirichlet boundary condi-

tion for the displacements . At the other boundaries we apply the Newmann boundary 

condition , i.e. the absence of the normal to the boundary total stresses. 

The equations contain the elastic modulus  and the shear modulus . These quantities 

depend linearly on the Young’s modulus  as 

,    . 

The temperature dependence is introduced into the Young’s modulus as . Here 

 dyn/cm2 is the Young’s modulus at the reference temperature ; Poisson’s ratio 

 is considered temperature-independent. As a specific example, the temperature 
dependence of the Young’s modulus is taken in the following calculations as [10]: 

 

where  is the melting temperature. 

The temperature  is chosen as it provides the best agreement between the empiri-
cal relation and experimental measurements. It is assumed that the thermal expansion coeffi-

cient does not depend on the temperature and is equal to . 
At the second stage of the simulation it is assumed that the temperature in the whole region is 

reduced to its reference value . At the same time due to the differences in strains in the 
”melted” and ”unmelted” subdomains, the residual stresses appear. At this stage the equation 

(1) is solved numerically in both subdomains I and II. As , the thermal stresses 
are absent. In the same way as it is at the first stage of simulation, at the lower boundary of 

the joint computational domain I+II the Derichlet’s boundary condition  for the dis-
placements is applied. On the other boundaries the Newmann’s boundary condition 

 is applied. 



The problem (1) is solved for the displacements. The temperature field and the thermal term 
are assumed to be defined. At the first stage the displacements of the elastic material particles 
are calculated. 
After the temperature in the both regions returns to the initial reference value at fixed particle 
displacements, obtained at the first stage. In order to the particles do not shift from now on, 
they must be under the action of ”virtual” force with density 

,     ,     , 

where the elastic moduli are calculated at the temperature ;  are the displacements 
obtained at the first stage. 
Note that in the subdomain II the ”virtual” force acts only on the surface and provides a 
uniform tension of this subdomain, in accordance with the thermal expansion obtained at the 
first stage. 
At the second stage the ”virtual” force disappears, and the particles of the elastic material, 
enclosed within the subdomains I and II, relax to the ”natural” state. This state, however, 
does not coincide with the initial one for the reasons mentioned above. At this point, the 
following problem is considered 

,     ,                                          (2) 
The displacements of the material particles (after the stages ”heating+melting” and ”solidifi-
cation+cooling”) obtain finally the following values 

. 
The residual stresses are calculated for these residual displacements by the formula (2), 

where the elastic moduli are calculated at the reference temperature . 
     The output  data for the proposed mathematical model are temperature fields, components 
of the stress tensor (as well as the main directions and stresses calculated from them), com-
ponents of the displacement vector. For greater clarity, when analyzing the results of numeri-
cal modeling, it is proposed to use a joint flat technology as representation of the fields of 
scalar quantities. This is done by filling the vector quantities shown by streamlines with color 
and the direction field. To implement this visual presentation method, the well-known graph-
ic visualization package TecPlot [11] and the corresponding data file format were used. 

3. The results of simulation. 

The difference scheme that approximates the Lame equations on a curvilinear mesh is based 
on the support operators method [12]. The method provides self-adjointness and positivity of 
an approximation difference operator, if the parent operator of the initial differential problem 
has the same properties. The matrix of the set of linear equations for the displacements is 
inversed by conjugate gradient method. 

Calculations were performed for silumin powder. The laser radiation power is  kW, the 
laser beam radius is 1.67 mm, the laser light absorption factor is 0.45, the radius of the pow-
der jet is 4 mm, the capture efficiency of powder is 0.7, the mass discharge of the powder is 
20 g/min. 
The temperature distribution in the substrate at the heating stage is presented in Fig. 2. Here, 
the lines indicate the direction of the displacements. Fig. 3 shows the distribution of the main 
stresses in the substrate at the heating stage. The lines indicate the direction the main stress-
es, color represents the corresponding values. 
The distribution of the residual displacements in the substrate and the weld bead after cool-
ing is shown in Fig. 4. Fig. 5 shows the distribution of the main stresses in the substrate and 



the weld bead after cooling. The lines indicate the direction of the main stresses, color repre-
sents the corresponding values.  
 

 
Figure 2: The temperature distribution, established in the substrate at the heating stage. The 

lines show the direction of the displacements. 
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Figure 3: Distributions of main stresses in the substrate at the heating stage. The lines indi-
cate the direction of the stresses, color represents the corresponding values (MPa). Cases A, 
B: the stresses at the section y-z. Case C: the same along the scanning direction of the laser 

beam (x-axis). 



 

 

Figure 4. Distribution of residual displacements (mcm) in the substrate and the weld bead at 
the cooling stage. The lines show the direction of the displacements, color represents the 

corresponding values in microns. 
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Figure 5: Distributions of main stresses in the substrate and the weld bead at the cooling 
stage. The lines indicate the direction of the stresses, color represents the corresponding 

values (MPa). Cases A, B: the stresses at the section y-z. Case C: the same along the scanning 
direction of the laser beam (x-axis). 



4. Conclusions 

Study the stress-strain state that occurs in LS of metal in weld bead and substrate, a mathe-
matical model and the corresponding computational algorithm are developed. A technique is 
proposed for visual presentation of the results of numerical simulation of the stress-strain 
state (deformation and stress fields) arising from local heating, partial melting and subse-
quent cooling of the product. Using the developed computer technology, the stress fields were 
calculated and visualized for a specific mode of the LS process. It was found that in the 
boundary layers of the weld layer, the stress level is the highest. Perhaps this is due to large 
temperature gradients in these zones. In numerical experiments, it was shown that taking the 
temperature dependence of Young's modulus into account when determining the stress-
strain state in products leads to a decrease in the calculated stress levels. In addition, taking 
this dependence into account can lead to noticeable qualitative differences in the pattern of 
stress state evolution compared with the elastic setting. The resulting patterns of residual 
stresses make it possible to predict the appearance of microcracks arising in the product after 
the process of laser powder deposition, depending on the processing mode. The presented 
numerical model can be used to calculate the residual stresses of a real process in the pres-
ence of physical parameters of the material.  
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